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Abstract: Deaza-epothilone C, which incorporates a thiophene moiety in place of the thiazole
heterocycle in the natural epothilone side chain, has been prepared by semisynthesis from epothilone
A, in order to assess the contribution of the thiazole nitrogen to microtubule binding. The synthesis
was based on the esterification of a known epothilone A-derived carboxylic acid fragment and a
fully synthetic alcohol building block incorporating the modified side chain segment and subsequent
ring-closure by ring-closing olefin metathesis. The latter proceeded with unfavorable selectivity and
in low yield. Distinct differences in chemical behavior were unveiled between the thiophene-derived
advanced intermediates and what has been reported for the corresponding thiazole-based congeners.
Compared to natural epothilone C, the free energy of binding of deaza-epothilone C to microtubules
was reduced by ca. 1 kcal/mol or less, thus indicating a distinct but non-decisive role of the thiazole
nitrogen in the interaction of epothilones with the tubulin/microtubule system. In contrast to natural
epothilone C, deaza-epothilone C was devoid of antiproliferative activity in vitro up to a concentration
of 10 µM, presumably due to an insufficient stability in the cell culture medium.

Keywords: binding affinity; epothilones; deaza-epothilone; microtubules; structure-activity
relationship; thiophene

1. Introduction

Epothilones A and B (Epo A and B) (Figure 1) are 16-membered, polyketide-derived macrolides
that were discovered in 1987 by Reichenbach et al. in the context of a screening for new antifungal
agents from the soil-dwelling myxobacterium Sorangium cellulosum Soce 90 [1,2]. A number of closely
related, but less prevalent polyketides, like epothilones C (Epo C) and D (Epo D) were later identified
in larger scale fermentations of S. cellulosum [3].
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Epo A and B were subsequently found to be highly cytotoxic in the 60-cell line panel of the
National Cancer Institute, although the mechanistic underpinnings of this effect remained unknown at
the time [4]. Interest in epothilones then surged in 1995, when Bollag et al. demonstrated that Epo A
and B were new microtubule-stabilizing agents and, thus, inhibited cell proliferation by a taxol-like
mechanism [5]. At the time of discovery of their mode of action, Epo A and B were the only non-taxane
compound class known to stabilize microtubules, but in contrast to taxol they retained almost full
activity (i.e., IC50 values in the nM range) against multidrug-resistant cancer cells expressing the
P-glycoprotein efflux pump or harboring tubulin mutations [6,7].

Numerous total syntheses of natural epothilones have been reported in the literature, and these
efforts have been reviewed extensively [8–13]. Based on the chemistry developed in the context
of the total synthesis work, hundreds of synthetic analogues of epothilones have been prepared
for structure-activity relationship (SAR) studies and with the objective to deliver compounds with
an improved overall pharmacological profile [14,15]. In addition, semisynthetic approaches have
been pursued to explore the epothilone-like structural space, in particular by Höfle and co-workers.
(This work is summarized in ref. [16]). The most important semisynthetic epothilone derivative
is the Epo B lactam ixabepilone, which is approved by the FDA (under the tradename Ixempra®)
for the treatment of metastatic or locally advanced breast cancer [17]. At least eight additional
epothilone-type agents have been advanced to clinical trials in oncology, including the natural product
Epo A [14,15], and Epo D has also been investigated in Phase I clinical trials for Alzheimer’s disease [18].
The development of most of these compounds has been discontinued (including the development of
Epo D for Alzheimer’s disease), but an analog termed utidelone (or UTD1) is currently being studied
in Phase III clinical trials against breast cancer (in combination with capecitabine) [19].

While numerous side chain-modified epothilone analogs have been investigated as part of
comprehensive SAR studies [15,16], a specific question that has been addressed only indirectly relates
to the importance of the N-atom in the thiazole ring for microtubule binding and cellular potency.
Thus, Nicolaou and co-workers have shown that among the three possible pyridyl-Epo B variants
(Figure 2), the isomer with the N-atom in the position ortho to the vinyl linker between the pyridine
ring and the macrolactone core (i.e., o-Pyr-Epo B) is the most potent with regard to both the promotion
of tubulin polymerization and the inhibition of cancer cell growth in vitro [20]. At the same time,
the meta and para isomers (m-Pyr-Epo B and p-Pyr-Epo B, respectively) still retained a significant
tubulin-polymerizing capacity, which reflects the ability of a compound to stabilize microtubules.
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Nicolaou’s data were in line with the results of an earlier study by Danishefsky and co-workers
who had reported the phenyl-based Epo D analog Ph-Epo D (Figure 2) to be a potent inducer of
tubulin polymerization, albeit to a lower extent than the natural product Epo D itself [21]. These data
suggested that the presence of a heterocyclic N-atom next to the vinyl linker moiety in epothilone
analogs is required for maximum induction of tubulin assembly and, consequently, for the inhibition of
cancer cell proliferation. However, neither of the above studies included a quantitative assessment of
the microtubule-binding affinity of the analogs investigated. In this context, it needs to be recognized
that the assessment of tubulin polymerization induction is useful for the unequivocal identification of
compounds with poor tubulin assembly properties, but is less suited for the high-resolution quantitative
differentiation between potent assembly inducers. In our own work, we have demonstrated that the
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microtubule-binding affinities of quinoline-based epothilone analogs (Figure 3) [22] that incorporate the
side chain N-atom in the “natural” position (i.e., m-Quin-Epo B and m-Quin-Epo D) are ca. one order
of magnitude higher than those of the corresponding regioisomers p-Quin-Epo B and p-Quin-Epo D,
respectively (Kb’s of 92 × 107 and 88 × 107 for m-Quin-Epo B and m-Quin-Epo D, respectively,
vs. 6.9 × 107 and 6.1 × 107 for p-Quin-Epo B and p-Quin-Epo D). Quite intriguingly, and for reasons
not understood, the difference in the microtubule-binding affinity between m-Quin-Epo D and
p-Quin-Epo D translates into a corresponding difference in the cellular activity, while the epoxides
m-Quin-Epo B and p-Quin-Epo B are virtually equipotent (and highly active).
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While our data for quinoline-based epothilone analogs seem to re-enforce the conclusions derived
from the earlier studies by Nicolaou and Danishefsky on pyridyl- and phenyl-based epothilone
analogs, respectively, they need to be interpreted with some care, in light of the significant overall
modification of the side chain vs. natural epothilones. Finally, the recent X-ray crystal structure of a
tubulin-Epo A complex [23] invokes a hydrogen bond between the thiazole nitrogen and the side chain
hydroxy group of βThr297. Overall, the available experimental data suggest that the presence of a
properly positioned heterocyclic N-atom in side chain-modified epothilone analogs is required, in order
to maximize interactions with the tubulin/microtubule system. At the same time, the magnitude
of the effect associated with the simple removal of this nitrogen from the natural side chain, quite
surprisingly, has never been assessed. We have thus been interested for some time in the synthesis of a
thiophene-containing analog of a natural epothilone and the determination of its microtubule-binding
affinity in comparison with the natural parent structure. In this paper, we describe the results of
these efforts.

2. Materials and Methods

Detailed protocols for the synthesis of new compounds and the associated analytical data can be
found in the Supplementary Materials.

3. Results and Discussion

3.1. Synthesis of Deaza-Epo C (5)

The initial synthetic target of our work was deaza-Epo A (1), which we planned to access
from ketone 2 by means of the Wittig or Horner–Woodsworth–Emmons (HWE) reaction (Scheme 1).
Ketone 2 can be accessed from Epo A by TMS-protection and ozonolysis [24]; and its conversion into
TMS-protected 3 via the transformation of the ketone moiety into the corresponding vinyl boronic acid,
followed by iodination and Stille coupling, had been described earlier by Höfle and co-workers [25].
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However, no experimental protocols for this reaction sequence are provided in ref. [25], and no
yields are reported for the iodination and Stille coupling steps. On the other hand, we had been
successful ourselves in the elaboration of ketone 2 into epothilone A analogs bearing modified thiazole,
pyrimidine or pyridine moieties in place of the natural thiazole heterocycle by means of HWE chemistry
(Hauenstein & Altmann, unpublished experiments; see also refs. [26,27]). Unfortunately, the attempted
HWE coupling of 2 with phosphonate 4 did not yield any of the desired olefin (Scheme 1).
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In light of a previous report by Höfle and co-workers, who had been unable of convert 2 into
phenyl-Epo A or to reconstruct Epo A from 2 by a variety of olefination methods [24], we did not
further pursue the direct elaboration of 2 into 1. Instead, we turned our attention to a different aspect of
the chemistry of Epo A that had been unveiled by Höfle’s work on semisynthetic epothilone derivatives
and that involves the targeted removal of the C13–C15 segment of the macrocycle to generate acid
8 [28] (Scheme 2). The latter was then to be esterified with alcohol 7, and the resulting diene would be
cyclized by ring-closing olefin metathesis (RCM) in analogy to previous work on the total synthesis of
Epo A [29–31]. Deprotection would then yield deaza-Epo C (5).
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When elaborating this strategy, we were cognizant of the fact that the conversion of the Epo C
analog 5 into 1 might be impaired by the competing epoxidation of the C16–C17 double bond, which is
more nucleophilic than in Epo C, and/or oxidation at sulfur [32]. At the same time, we also felt that our
question about the effects of the removal of the thiazole nitrogen could be addressed by comparing the
microtubule-binding affinity of 5 with that of Epo C, as the latter had also been reported to be a potent
inducer of tubulin polymerization [33] (although no microtubule binding data for the compound exist
in the literature).

In the forward direction, the synthesis of acid 8 commenced with the deoxygenation of Epo A
with 3-methylbenzo[d]thiazole-2(3H)-selenone (10), prepared according to Calo and co-workers by
refluxing methylbenzothiazolium iodide and elemental selenium in pyridine [34] (Scheme 3).
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The deoxygenation reaction gave Epo C in highly variable yields, due to incomplete conversion
and the formation of an unknown side product that was difficult to remove. It was found eventually,
however, that the subsequent ring-opening reaction proceeded equally well without the prior removal
of this impurity, thus obviating the need for the tedious purification of the intermediate Epo C.
The ring-opening of the macrocycle with ethylene in the presence of the Grubbs–Hoveyda II catalyst
furnished diene 9 (as described [28]), which was converted into acid 8 by sequential treatment with
TBSOTf and LiOH at elevated temperature under microwave conditions in 61% overall yield.

The synthesis of alcohol 7 started from 3-thienylmethanol (11), which was TBS-protected;
deprotonation of TBS-ether 12 with nBuLi (1.1 equiv) and reaction with a two-fold excess of MeI
then provided TBS-ether 13 in 62% yield (Scheme 4). The deprotection of 13 with TBAF, followed by
oxidation of the ensuing free alcohol under Swern conditions, afforded the desired aldehyde 15 in 71%
overall yield. The Wittig reaction of 15 with 16 then delivered homologated aldehyde 17 (71% yield).
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The reaction of 17 with the dibutylboron enolate of acetylsultam 18, obtained by the successive
treatment of the latter with dibutylboron triflate and DIPEA [22,35], proceeded with only moderate
selectivity, to afford a ca. 2:1 mixture of aldol products, in favor of the desired isomer 19 [36]. Preparing
the dibutylboron triflate in situ from triethylborane and trifluoromethanesulfonic acid did not lead to
an improved dr. Although tedious, isomer separation was possible by column chromatography, and 19
was finally obtained as a single isomer in 51% yield; the latter was then protected as its TBS-ether 20.
The reductive cleavage of the auxiliary with DIBAL-H, followed by Julia−Kocienski olefination of
the ensuing aldehyde 21 with sulfone 22 and subsequent TBS-deprotection, gave homoallylic alcohol
7 in ca. 8.5% overall yield for the 10-step sequence from 3-thienylmethanol (11). The attempted
Wittig olefination of aldehyde 21 with methyltriphenylphosphonium bromide in combination with
various bases had been found previously to induce the elimination of TBSOH (Cintulová & Altmann,
unpublished).

The esterification of alcohol 7 with acid 8 under Yamaguchi conditions [37] at RT furnished diene
6 in moderate but acceptable yields of 44%−65% (Scheme 5).
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A series of screening experiments was then performed on an analytical scale to identify the best
conditions for the crucial ring-closure reaction, including a range of solvents (DCM, benzene, toluene,
THF) and different metathesis catalysts (Grubbs I and II, Hoveyda−Grubbs II, Grubbs III) [38].
Not unexpectedly, the reaction under all conditions investigated suffered from low selectivity;
low selectivity has also been reported for the RCM of bis-TBS-protected Epo C with the Grubbs
I catalyst [29–31]). However, in contrast to the latter, which delivered the E/Z isomeric mixture of
macrocycles in high yield, diene 6 appeared to be of limited stability under the reaction conditions and/or
to be consumed by alternative reaction pathways. Overall, the screening experiments, unfortunately,
did not provide consistent guidance on how to maximize the yield of the desired macrocycle 23.
Ultimately, the reaction was conducted with 0.1 equiv. of Grubbs II catalyst in toluene at 40 ◦C and
quenched before complete conversion of the starting material. On a 20 mg scale, these conditions
provided 3.5 mg of slightly impure 23 (17%) together with 6.9 mg (33%) of the corresponding 12,13-E
isomer. When the reaction was carried out for 3 h at reflux, the E isomer of 23 was obtained in 51%
isolated yield.

The difficulties with the RCM of diene 6 were then further aggravated by the fact that no conditions
could be identified that would have allowed for the clean deprotection of 23, including conditions
that have been employed successfully in the deprotection of bis-TBS-protected Epo C [29–31]. These
findings, which point to a distinct instability of 23 (or 5) compared to (protected) Epo C, called for a
change to a protecting group more easily removable than TBS. An obvious candidate that would meet
this requirement was the TMS group and we felt that the corresponding acid 8a (Figure 4) could be
readily available from 9 in analogy to the preparation of 8, by simply substituting TMSOTf for TBSOTf.
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Unfortunately, the treatment of 9 with TMSOTf under a variety of conditions did not lead
to complete conversion to the bis-TMS ether 8a, even if a large excess of TMSOTf was employed
(up to 75-fold); in addition, the retro aldol cleavage of the C3−C4 bond was frequently observed as
a side reaction [39]. The purification of acid 8a by silica gel chromatography was possible to some
extent, but was complicated by the limited stability of the compound under the chromatographic
conditions. In contrast to 8a, mono-TMS-ether 26 (Scheme 6) could be obtained in 53% yield after
column chromatography, when TMSOTf and 2,6-lutidine were premixed in DCM before the addition of
9 to the reaction mixture (Scheme 6). While the use of 26 presented its own problems in the subsequent
esterification step (vide infra), sufficient quantities of this material could be produced to complete the
synthesis of the target structure.
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Thus, the reaction of 26 with 7 under Yamaguchi conditions gave the desired ester 26 and the
dimeric structure 27 [40] in a ca. 2:1 ratio and with an overall yield of 39%. The separation of 26 and
27 was possible, if tedious, but was better performed after the RCM step. Intriguingly, two attempts
at the Yamaguchi esterification of doubly TMS-protected acid 8a only led to slow decomposition,
with alcohol 7 being recovered in almost quantitative yields.

RCM with 60 mg of the 2:1 mixture of 26 and 27 with Grubbs I catalyst gave 4.5 mg (13%) of
Z-product 28 and 6.6 mg (19%) of E-isomer 29 after two preparative RP-HPLC runs. Furthermore,
6.9 mg (19%) of diene 26 were recovered; no other products were characterized. The configurational
assignment of the C12–C13 double bond in 28 and 29 was based on J coupling constants obtained via
NMR decoupling experiments. For Z-product 28, a coupling constant of 10.9 Hz was determined, while
E-isomer 29 showed a coupling constant of 15.3 Hz (see the Supporting Material). With the protected
macrocycle in hand, removal of the TMS moiety was then attempted with citric acid (MeOH, RT, 12 h),
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as this had proven successful for other TMS-protected epothilone analogs [27]; however, the mass of 5
was not detected in the reaction mixture, and RP-HPLC indicated the formation of multiple products.
In contrast, the final deprotection of 28 with PPTS in EtOH gratifyingly afforded deaza-Epo C (5) in
67% yield after HPLC purification (Scheme 6).

3.2. Biochemical and Cellular Assessment

With deaza-Epo C (5) in hand, we assessed the binding of the compound to cross-linked
microtubules at different temperatures in comparison with natural Epo C. As can be seen from the
data presented in Table 1, for temperatures up to 35 ◦C, the binding constant of deaza-Epo C (5) for
microtubules is ca. 4-fold to 6-fold lower than that of Epo C, corresponding to a free energy difference
∆∆G of ca. 0.7 kcal/mol to 1 kcal/mol. Thus, the loss in binding free energy incurred by the replacement
of the thiazole nitrogen in Epo C by a CH group is rather modest and appears to be comparable with
the loss in binding energy observed upon removal of the epoxide oxygen from Epo A (to form Epo C)
(Table 1) or the Epo B→Epo D transformation [41]. The difference appears somewhat less pronounced
than for the quinoline-based Epo D analogs o-Quin-Epo D and p-Quin Epo D (Figure 3), where the
difference in binding constants is >10-fold; however, the differences are small and should not be
overinterpreted. At the same time, the data for the quinoline-based epothilones depicted in Figure 3
suggest that the difference in binding free energy observed here between Epo C and deaza-Epo C (5)
can most likely be extrapolated to epothilones A, B and D and their corresponding deaza analogs.
For temperatures above 35 ◦C, a marked drop in the microtubule-binding affinity of deaza-Epo C (5)
was observed (Kb of 5 × 105 at 42 ◦C); the effect is significantly more pronounced than for Epo C (Kb of
88 × 105 at 42 ◦C). The cause for this behavior is unclear at this point, but may be related to the limited
chemical stability of the compound 5 at higher temperatures (vide infra).

Table 1. Binding constants of deaza-Epo C (5), Epo C and Epo A for stabilized microtubules. 1

Compound Kb [107 M−1]

26 ◦C 30 ◦C 35 ◦C

5 0.39 ± 0.03 0.33 ± 0.02 0.37 ± 0.05
Epo C 1.46 ± 0.33 1.19 ± 0.15 1.93 ± 0.27

Epo A 2 7.48 ± 1.00 5.81 ± 1.08 3.63 ± 0.51
1 Association constant Kb with glutaraldehyde-stabilized microtubules at different temperatures, determined as
described in ref. [42]. Numbers are average values from three independent experiments ± standard deviation.
2 From ref. [41].

Epothilone analogs with similar Kb’s as deaza-Epo C (5) have been reported to exhibit sub-µM
antiproliferative activity [26], and it was, therefore, surprising that 5 showed no growth inhibition of
the human cancer cell lines MCF7 (breast) or A549 (lung) up to a concentration of 10 µM. In contrast,
and as expected from the literature, Epo C inhibited the growth of MCF7 and A549 cells with IC50

values of 9 nM and 103 nM, respectively [33]. These findings triggered experiments on the stability of
5 in cell culture medium, which revealed that the compound was degraded with a half-life of less than
2 h; this is significantly lower than the half-life of Epo C under identical conditions (see the Supporting
Material). Due to limitations in the sensitivity of the analytical system, the experiments had to be
carried out at a 100 µM concentration, which is 10-fold higher than the highest concentration tested in
the growth inhibition experiments. While our stability data, thus, are largely qualitative in nature,
they do indicate that the limited stability of deaza-Epo C (5) in cell culture medium may contribute to
the lack of cellular potency.

4. Conclusions

Deaza-epothilone C (5), which incorporates a thiophene heterocycle in place of the thiazole
moiety in natural epothilones, has been prepared by semisynthesis from epothilone A. The synthesis
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of building blocks 8 (from epothilone A) and 7 (from 3-thienylmethanol) was accomplished with
reasonable efficiency; the synthesis of the alternatively protected acids 8a and 23 proved to be more
difficult. Likewise, the elaboration of these building blocks into deaza-epothilone C was hampered
by significant difficulties, which (partly) reflect distinct differences in the chemical behavior between
the thiophene-containing intermediates and their thiazole-derived congeners. As a consequence,
deaza-epothilone C (5) was obtained from 7 in only 2.3% overall yield (three steps). Nevertheless,
sufficient material could be procured to assess the binding of 5 to microtubules and its cellular activity.
While the replacement of the thiazole nitrogen by a simple CH group causes a drop in the the free
energy of binding of 5 relative to epothilone C, in agreement with structural data for the tubulin/Epo A
complex and also previous (binding) data for quinoline-based epothilone analogs, the magnitude of
the decrease (between 0.7 and 1 kcal/mol) is rather modest. Thus, the data indicate that, in principle,
thiophene-derived analogs of epothilone A or B (or macrocycle-modified variants thereof) should
be high-affinity microtubule binders. However, high-affinity microtubule-binding of such analogs
may not translate into potent cellular activity, as indicated by the reduced stability (compared to
epothilone C) and lack of cellular activity observed for deaza-epothilone C (5). At the same time,
stability may be enhanced by appropriate modification of the thiophene ring (e.g., by the replacement
of the methyl group by a quasi-isosteric electron-withdrawing chlorine atom). These questions will
have to be clarified in future experiments.

Supplementary Materials: The following are available online at http://www.mdpi.com/2624-8549/2/2/30/s1,
synthesis protocols and analytical data for all new compounds, Figure S1: Decoupling experiments with 28,
Figure S2: Decoupling experiments with 29, Figure S3: Stability of deaza-Epo C (5) in Dulbecco’s Modified Eagle
Medium (DMEM) over a 2 h time period, Figure S4: Stability of deaza-Epo C (5) in DMEM over a 24 h time period,
Figure S5: Stability of Epo C in DMEM over a 2 h time period, Figure S6: Stability of Epo C in DMEM over a 24 h
time period.
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